Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Nat Med ; 29(12): 3111-3119, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37946058

RESUMO

Over one million European children undergo computed tomography (CT) scans annually. Although moderate- to high-dose ionizing radiation exposure is an established risk factor for hematological malignancies, risks at CT examination dose levels remain uncertain. Here we followed up a multinational cohort (EPI-CT) of 948,174 individuals who underwent CT examinations before age 22 years in nine European countries. Radiation doses to the active bone marrow were estimated on the basis of body part scanned, patient characteristics, time period and inferred CT technical parameters. We found an association between cumulative dose and risk of all hematological malignancies, with an excess relative risk of 1.96 (95% confidence interval 1.10 to 3.12) per 100 mGy (790 cases). Similar estimates were obtained for lymphoid and myeloid malignancies. Results suggest that for every 10,000 children examined today (mean dose 8 mGy), 1-2 persons are expected to develop a hematological malignancy attributable to radiation exposure in the subsequent 12 years. Our results strengthen the body of evidence of increased cancer risk at low radiation doses and highlight the need for continued justification of pediatric CT examinations and optimization of doses.


Assuntos
Neoplasias Hematológicas , Neoplasias Induzidas por Radiação , Exposição à Radiação , Humanos , Criança , Adolescente , Adulto Jovem , Adulto , Doses de Radiação , Neoplasias Induzidas por Radiação/epidemiologia , Neoplasias Induzidas por Radiação/etiologia , Neoplasias Induzidas por Radiação/patologia , Neoplasias Hematológicas/epidemiologia , Neoplasias Hematológicas/etiologia , Exposição à Radiação/efeitos adversos , Tomografia Computadorizada por Raios X/efeitos adversos
2.
Lancet Oncol ; 24(1): 45-53, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36493793

RESUMO

BACKGROUND: The European EPI-CT study aims to quantify cancer risks from CT examinations of children and young adults. Here, we assess the risk of brain cancer. METHODS: We pooled data from nine European countries for this cohort study. Eligible participants had at least one CT examination before age 22 years documented between 1977 and 2014, had no previous diagnosis of cancer or benign brain tumour, and were alive and cancer-free at least 5 years after the first CT. Participants were identified through the Radiology Information System in 276 hospitals. Participants were linked with national or regional registries of cancer and vital status, and eligible cases were patients with brain cancers according to WHO International Classification of Diseases for Oncology. Gliomas were analysed separately to all brain cancers. Organ doses were reconstructed using historical machine settings and a large sample of CT images. Excess relative risks (ERRs) of brain cancer per 100 mGy of cumulative brain dose were calculated with linear dose-response modelling. The outcome was the first reported diagnosis of brain cancer after an exclusion period of 5 years after the first electronically recorded CT examination. FINDINGS: We identified 948 174 individuals, of whom 658 752 (69%) were eligible for our study. 368 721 (56%) of 658 752 participants were male and 290 031 (44%) were female. During a median follow-up of 5·6 years (IQR 2·4-10·1), 165 brain cancers occurred, including 121 (73%) gliomas. Mean cumulative brain dose, lagged by 5 years, was 47·4 mGy (SD 60·9) among all individuals and 76·0 mGy (100·1) among people with brain cancer. A significant linear dose-response relationship was observed for all brain cancers (ERR per 100 mGy 1·27 [95% CI 0·51-2·69]) and for gliomas separately (ERR per 100 mGy 1·11 [0·36-2·59]). Results were robust when the start of follow-up was delayed beyond 5 years and when participants with possibly previously unreported cancers were excluded. INTERPRETATION: The observed significant dose-response relationship between CT-related radiation exposure and brain cancer in this large, multicentre study with individual dose evaluation emphasises careful justification of paediatric CTs and use of doses as low as reasonably possible. FUNDING: EU FP7; Belgian Cancer Registry; La Ligue contre le Cancer, L'Institut National du Cancer, France; Ministry of Health, Labour and Welfare of Japan; German Federal Ministry of Education and Research; Worldwide Cancer Research; Dutch Cancer Society; Research Council of Norway; Consejo de Seguridad Nuclear, Generalitat de Catalunya, Spain; US National Cancer Institute; UK National Institute for Health Research; Public Health England.


Assuntos
Neoplasias Encefálicas , Glioma , Neoplasias Induzidas por Radiação , Exposição à Radiação , Criança , Humanos , Masculino , Feminino , Adulto Jovem , Adulto , Estudos de Coortes , Doses de Radiação , Neoplasias Induzidas por Radiação/epidemiologia , Neoplasias Induzidas por Radiação/etiologia , Neoplasias Induzidas por Radiação/patologia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/epidemiologia , Neoplasias Encefálicas/etiologia , Glioma/diagnóstico por imagem , Glioma/epidemiologia , Glioma/etiologia , Exposição à Radiação/efeitos adversos , Tomografia Computadorizada por Raios X/efeitos adversos , Tomografia Computadorizada por Raios X/métodos
3.
JMIR Cancer ; 8(4): e38088, 2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36374536

RESUMO

BACKGROUND: Although the treatment for breast cancer is highly personalized, posttreatment surveillance remains one-size-fits-all: annual imaging and physical examination for at least five years after treatment. The INFLUENCE nomogram is a prognostic model for estimating the 5-year risk for locoregional recurrences and second primary tumors after breast cancer. The use of personalized outcome data (such as risks for recurrences) can enrich the process of shared decision-making (SDM) for personalized surveillance after breast cancer. OBJECTIVE: This study aimed to develop a patient decision aid (PtDA), integrating personalized risk calculations on risks for recurrences, to support SDM for personalized surveillance after curative treatment for invasive breast cancer. METHODS: For the development of the PtDA, the International Patient Decision Aids Standards development process was combined with a mixed methods design inspired by the development process of previously developed PtDAs. In the development, 8 steps were distinguished: establishing a multidisciplinary steering group; definition of the end users, scope, and purpose of the PtDA; assessment of the decisional needs of end users; defining requirements for the PtDA; determining the format and implementation strategy for the PtDA; prototyping; alpha testing; and beta testing. The composed steering group convened during regular working-group sessions throughout the development process. RESULTS: The "Breast Cancer Surveillance Decision Aid" consists of 3 components that support the SDM process: a handout sheet on which personalized risks for recurrences, calculated using the INFLUENCE-nomogram, can be visualized and which contains an explanation about the decision for surveillance and a login code for a web-based deliberation tool; a web-based deliberation tool, including a patient-reported outcome measure on fear of cancer recurrence; and a summary sheet summarizing patient preferences and considerations. The PtDA was assessed as usable and acceptable during alpha testing. Beta testing is currently ongoing. CONCLUSIONS: We developed an acceptable and usable PtDA that integrates personalized risk calculations for the risk for recurrences to support SDM for surveillance after breast cancer. The implementation and effects of the use of the "Breast Cancer Surveillance Decision Aid" are being investigated in a clinical trial.

4.
Radiat Res ; 196(1): 74-99, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33914893

RESUMO

Within the European Epidemiological Study to Quantify Risks for Paediatric Computerized Tomography (EPI-CT study), a cohort was assembled comprising nearly one million children, adolescents and young adults who received over 1.4 million computed tomography (CT) examinations before 22 years of age in nine European countries from the late 1970s to 2014. Here we describe the methods used for, and the results of, organ dose estimations from CT scanning for the EPI-CT cohort members. Data on CT machine settings were obtained from national surveys, questionnaire data, and the Digital Imaging and Communications in Medicine (DICOM) headers of 437,249 individual CT scans. Exposure characteristics were reconstructed for patients within specific age groups who received scans of the same body region, based on categories of machines with common technology used over the time period in each of the 276 participating hospitals. A carefully designed method for assessing uncertainty combined with the National Cancer Institute Dosimetry System for CT (NCICT, a CT organ dose calculator), was employed to estimate absorbed dose to individual organs for each CT scan received. The two-dimensional Monte Carlo sampling method, which maintains a separation of shared and unshared error, allowed us to characterize uncertainty both on individual doses as well as for the entire cohort dose distribution. Provided here are summaries of estimated doses from CT imaging per scan and per examination, as well as the overall distribution of estimated doses in the cohort. Doses are provided for five selected tissues (active bone marrow, brain, eye lens, thyroid and female breasts), by body region (i.e., head, chest, abdomen/pelvis), patient age, and time period (1977-1990, 1991-2000, 2001-2014). Relatively high doses were received by the brain from head CTs in the early 1990s, with individual mean doses (mean of 200 simulated values) of up to 66 mGy per scan. Optimization strategies implemented since the late 1990s have resulted in an overall decrease in doses over time, especially at young ages. In chest CTs, active bone marrow doses dropped from over 15 mGy prior to 1991 to approximately 5 mGy per scan after 2001. Our findings illustrate patterns of age-specific doses and their temporal changes, and provide suitable dose estimates for radiation-induced risk estimation in epidemiological studies.


Assuntos
Doses de Radiação , Tomografia Computadorizada por Raios X , Adolescente , Criança , Pré-Escolar , Estudos de Coortes , Europa (Continente)/epidemiologia , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Imagens de Fantasmas
7.
J Natl Cancer Inst ; 111(3): 256-263, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30020493

RESUMO

BACKGROUND: Computed tomography (CT), a strong diagnostic tool, delivers higher radiation doses than most imaging modalities. As CT use has increased rapidly, radiation protection is important, particularly among children. We evaluate leukemia and brain tumor risk following exposure to low-dose ionizing radiation from CT scans in childhood. METHODS: For a nationwide retrospective cohort of 168 394 children who received one or more CT scans in a Dutch hospital between 1979 and 2012 who were younger than age 18 years, we obtained cancer incidence, vital status, and confounder information by record linkage with external registries. Standardized incidence ratios were calculated using cancer incidence rates from the general Dutch population. Excess relative risks (ERRs) per 100 mGy organ dose were calculated with Poisson regression. All statistical tests were two-sided. RESULTS: Standardized incidence ratios were elevated for all cancer sites. Mean cumulative bone marrow doses were 9.5 mGy at the end of follow-up, and leukemia risk (excluding myelodysplastic syndrome) was not associated with cumulative bone marrow dose (44 cases). Cumulative brain dose was on average 38.5 mGy and was statistically significantly associated with risk for malignant and nonmalignant brain tumors combined (ERR/100 mGy: 0.86, 95% confidence interval = 0.20 to 2.22, P = .002, 84 cases). Excluding tuberous sclerosis complex patients did not substantially change the risk. CONCLUSIONS: We found evidence that CT-related radiation exposure increases brain tumor risk. No association was observed for leukemia. Compared with the general population, incidence of brain tumors was higher in the cohort of children with CT scans, requiring cautious interpretation of the findings.


Assuntos
Neoplasias Encefálicas/etiologia , Leucemia/etiologia , Neoplasias Induzidas por Radiação/etiologia , Exposição à Radiação/efeitos adversos , Tomografia Computadorizada por Raios X/efeitos adversos , Adolescente , Adulto , Neoplasias Encefálicas/patologia , Criança , Pré-Escolar , Feminino , Seguimentos , Humanos , Leucemia/patologia , Masculino , Neoplasias Induzidas por Radiação/patologia , Países Baixos , Prognóstico , Doses de Radiação , Sistema de Registros , Estudos Retrospectivos , Adulto Jovem
9.
Radiat Res ; 189(2): 128-135, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29206598

RESUMO

Recently reported studies have associated radiation exposure from computed tomography (CT) scanning with small excess cancer risks. However, since existing medical records were used in these studies, they could not control for reasons for the CT scans and therefore, the results may have been confounded by indication. Here we conducted a study to estimate potential indication bias that could affect hazard ratios for colorectal, lung and female breast cancers by reasons for a CT scan. This involved a retrospective cohort study of electronic records from all patients aged 18-89 years without previous cancer diagnoses, who received at least one CT scan at Columbia University Medical Center in the period of 1994-2014. This investigation is not a study of CT-related cancer risks with adjustment for reasons, but an evaluation of the potential for confounding by indication in such studies. Among 75,968 patients, 212,487 CT scans were analyzed during a mean follow-up of 7.6 years. For colorectal and female breast cancers, no hazard ratio bias estimates for any of the CT reasons reached statistical significance. For lung cancer, significant biases occurred only in patients with unknown CT reasons and in patients with CTs for "abnormal findings" and in those with CTs for cancer- or nodule-related reasons. This retrospective cohort study among adults with ≥1 CT scan evaluates, for the first time, CT reason-specific indication biases of potential CT-related cancer risks. Overall, our data suggest that, in studies of adults who underwent CT scans, indication bias is likely to be of negligible importance for colorectal cancer and female breast cancer risk estimation; for lung cancer, indication bias is possible but would likely be associated with only a small modulation of the risk estimate. Radiat. Res.


Assuntos
Neoplasias Induzidas por Radiação/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Viés , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doses de Radiação , Medição de Risco , Adulto Jovem
11.
J Radiol Prot ; 36(4): 953-974, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27893452

RESUMO

Recent studies linking radiation exposure from pediatric computed tomography (CT) to increased risks of leukemia and brain tumors lacked data to control for cancer susceptibility syndromes (CSS). These syndromes might be confounders because they are associated with an increased cancer risk and may increase the likelihood of pediatric CT scans. We identify CSS predisposing to leukemia and brain tumors through a systematic literature search and summarize prevalence and risk. Since empirical evidence is lacking in published literature on patterns of CT use for most types of CSS, we estimate confounding bias of relative risks (RR) for categories of radiation exposure based on expert opinion about patterns of CT scans among CSS patients. We estimate that radiation-related RRs for leukemia are not meaningfully confounded by Down syndrome, Noonan syndrome and other CSS. Moreover, tuberous sclerosis complex, von Hippel-Lindau disease, neurofibromatosis type 1 and other CSS do not meaningfully confound RRs for brain tumors. Empirical data on the use of CT scans among CSS patients is urgently needed. Our assessment indicates that associations with radiation exposure from pediatric CT scans and leukemia or brain tumors reported in previous studies are unlikely to be substantially confounded by unmeasured CSS.


Assuntos
Neoplasias Encefálicas/epidemiologia , Leucemia/epidemiologia , Neoplasias Induzidas por Radiação/epidemiologia , Tomografia Computadorizada por Raios X/efeitos adversos , Criança , Comorbidade , Fatores de Confusão Epidemiológicos , Diagnóstico por Imagem , Feminino , Predisposição Genética para Doença , Humanos , Expectativa de Vida , Masculino , Síndromes Neoplásicas Hereditárias/epidemiologia , Prevalência , Exposição à Radiação , Medição de Risco , Fatores de Risco
12.
Cancer Epidemiol Biomarkers Prev ; 25(1): 114-26, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26598533

RESUMO

BACKGROUND: Recent studies linking radiation exposure from pediatric computed tomography (CT) to increased risks of leukemia and brain tumors lacked data to control for cancer susceptibility syndromes (CSS). These syndromes might be confounders because they are associated with an increased cancer risk and may increase the likelihood of CT scans performed in children. METHODS: We identify CSS predisposing to leukemia and brain tumors through a systematic literature search and summarize prevalence and risk estimates. Because there is virtually no empirical evidence in published literature on patterns of CT use for most types of CSS, we estimate confounding bias of relative risks (RR) for categories of radiation exposure based on expert opinion about the current and previous patterns of CT scans among CSS patients. RESULTS: We estimate that radiation-related RRs for leukemia are not meaningfully confounded by Down syndrome, Noonan syndrome, or other CSS. In contrast, RRs for brain tumors may be overestimated due to confounding by tuberous sclerosis complex (TSC) while von Hippel-Lindau disease, neurofibromatosis type 1, or other CSS do not meaningfully confound. Empirical data on the use of CT scans among CSS patients are urgently needed. CONCLUSIONS: Our assessment indicates that associations with leukemia reported in previous studies are unlikely to be substantially confounded by unmeasured CSS, whereas brain tumor risks might have been overestimated due to confounding by TSC. IMPACT: Future studies should identify TSC patients in order to avoid overestimation of brain tumor risks due to radiation exposure from CT scans.


Assuntos
Neoplasias Encefálicas/epidemiologia , Neoplasias Encefálicas/etiologia , Suscetibilidade a Doenças , Leucemia/epidemiologia , Leucemia/etiologia , Neoplasias Induzidas por Radiação/epidemiologia , Tomografia Computadorizada por Raios X/efeitos adversos , Neoplasias Encefálicas/patologia , Criança , Humanos , Leucemia/patologia , Metanálise como Assunto , Estadiamento de Neoplasias , Neoplasias Induzidas por Radiação/patologia , Prevalência , Prognóstico , Medição de Risco , Fatores de Risco , Síndrome , Estados Unidos/epidemiologia
13.
J Radiol Prot ; 35(3): 611-28, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26226081

RESUMO

Computed tomography (CT) has great clinical utility and its usage has increased dramatically over the years. Concerns have been raised, however, about health impacts of ionising radiation exposure from CTs, particularly in children, who have a higher risk for some radiation induced diseases. Direct estimation of the health impact of these exposures is needed, but the conduct of epidemiological studies of paediatric CT populations poses a number of challenges which, if not addressed, could invalidate the results. The aim of the present paper is to review the main challenges of a study on the health impact of paediatric CTs and how the protocol of the European collaborative study EPI-CT, coordinated by the International Agency for Research on Cancer (IARC), is designed to address them. The study, based on a common protocol, is being conducted in Belgium, Denmark, France, Germany, the Netherlands, Norway, Spain, Sweden and the United Kingdom and it has recruited over one million patients suitable for long-term prospective follow-up. Cohort accrual relies on records of participating hospital radiology departments. Basic demographic information and technical data on the CT procedure needed to estimate organ doses are being abstracted and passive follow-up is being conducted by linkage to population-based cancer and mortality registries. The main issues which may affect the validity of study results include missing doses from other radiological procedures, missing CTs, confounding by CT indication and socioeconomic status and dose reconstruction. Sub-studies are underway to evaluate their potential impact. By focusing on the issues which challenge the validity of risk estimates from CT exposures, EPI-CT will be able to address limitations of previous CT studies, thus providing reliable estimates of risk of solid tumours and leukaemia from paediatric CT exposures and scientific bases for the optimisation of paediatric CT protocols and patient protection.


Assuntos
Neoplasias Induzidas por Radiação/epidemiologia , Pediatria , Tomografia Computadorizada por Raios X/efeitos adversos , Métodos Epidemiológicos , Europa (Continente)/epidemiologia , Humanos , Proteção Radiológica , Medição de Risco , Fatores de Risco
14.
Eur J Epidemiol ; 29(4): 293-301, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24748424

RESUMO

Computed tomography (CT) scans are indispensable in modern medicine; however, the spectacular rise in global use coupled with relatively high doses of ionizing radiation per examination have raised radiation protection concerns. Children are of particular concern because they are more sensitive to radiation-induced cancer compared with adults and have a long lifespan to express harmful effects which may offset clinical benefits of performing a scan. This paper describes the design and methodology of a nationwide study, the Dutch Pediatric CT Study, regarding risk of leukemia and brain tumors in children after radiation exposure from CT scans. It is a retrospective record-linkage cohort study with an expected number of 100,000 children who received at least one electronically archived CT scan covering the calendar period since the introduction of digital archiving until 2012. Information on all archived CT scans of these children will be obtained, including date of examination, scanned body part and radiologist's report, as well as the machine settings required for organ dose estimation. We will obtain cancer incidence by record linkage with external databases. In this article, we describe several approaches to the collection of data on archived CT scans, the estimation of radiation doses and the assessment of confounding. The proposed approaches provide useful strategies for data collection and confounder assessment for general retrospective record-linkage studies, particular those using hospital databases on radiological procedures for the assessment of exposure to ionizing or non-ionizing radiation.


Assuntos
Neoplasias Encefálicas/epidemiologia , Bases de Dados Factuais , Leucemia/epidemiologia , Registro Médico Coordenado , Doses de Radiação , Tomografia Computadorizada por Raios X/efeitos adversos , Adolescente , Criança , Pré-Escolar , Seguimentos , Humanos , Incidência , Lactente , Masculino , Neoplasias Induzidas por Radiação/epidemiologia , Países Baixos/epidemiologia , Pediatria , Radiação Ionizante , Estudos Retrospectivos , Medição de Risco , Fatores de Risco , Fatores Socioeconômicos , Tomografia Computadorizada por Raios X/métodos , Adulto Jovem
16.
Public Health Nutr ; 13(10): 1540-5, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19954572

RESUMO

OBJECTIVE: Multivitamin supplements are used by nearly half of middle-aged women in the USA. Despite this high prevalence of multivitamin use, little is known about the effects of multivitamins on health outcomes, including cancer risk. Our main objective was to determine the association between multivitamin use and the risk of breast cancer in women. DESIGN: We conducted a population-based case-control study among 2968 incident breast cancer cases (aged 20-69 years), diagnosed between 2004 and 2007, and 2982 control women from Wisconsin, USA. All participants completed a structured telephone interview which ascertained supplement use prior to diagnosis, demographics and risk factor information. Odds ratios and 95 % confidence intervals were calculated using multivariable logistic regression. RESULTS: Compared with never users of multivitamins, the OR for breast cancer was 1.02 (95 % CI 0.87, 1.19) for current users and 0.99 (95 % CI 0.74, 1.33) for former users. Further, neither duration of use (for > or =10 years: OR = 1.13, 95 % CI 0.93, 1.38, P for trend = 0.25) nor frequency (>7 times/week: OR = 1.00, 95 % CI 0.77, 1.28, P for trend = 0.97) was related to risk in current users. Stratification by menopausal status, family history of breast cancer, age, alcohol, tumour staging and postmenopausal hormone use did not significantly modify the association between multivitamin use and breast cancer. CONCLUSIONS: The current study found no association between multivitamin supplement use and breast cancer risk in women.


Assuntos
Neoplasias da Mama/etiologia , Suplementos Nutricionais/estatística & dados numéricos , Vitaminas , Adulto , Idoso , Neoplasias da Mama/induzido quimicamente , Neoplasias da Mama/prevenção & controle , Estudos de Casos e Controles , Feminino , Pesquisas sobre Atenção à Saúde , Humanos , Entrevistas como Assunto , Modelos Logísticos , Pessoa de Meia-Idade , Análise Multivariada , Razão de Chances , Vitaminas/efeitos adversos , Vitaminas/uso terapêutico , Wisconsin , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA